Snowmass LOIs on Lattice Gauge Theory

Andreas S. Kronfeld Fermilab

USQCD Collaboration

- USQCD is a federation of science collaborations:
 - acquire and coordinate computing resources for U.S. community of (numerical) lattice gauge theorists.
- USQCD Executive Committee will submit one LOI (to CompF02 and TF05), drawing attention to seven whitepapers that appeared in 2019 (being drafted).
- Constituent collaborations and groups of individuals are being explicit encouraged to submit LOIs.

Guides to the Slides

- Collaboration names imply a collaboration is working together.
- Personal names imply groupings outside of collaborations.
- Planned: under discussion but no draft yet.
- Drafting: being written
- Review: draft done, co-authors polishing
- Submitted

LOIs for CompF02: Theoretical Calculations and Simulation

Algorithms and Software in Support of Computational High-Energy and Nuclear Physics at the Exascale and Beyond

- · Carleton DeTar et alia (LatticeQCD ECP software task); drafting.
- Exascale challenge:
 - novel architectures, multiple vendors creates a software portability problem;
 - complex and evolving hardware and compiler stacks create an optimization challenge.
- Listing of USQCD code bases and libraries for NP & HEP lattice QCD calculations and BSM exploration.
- ECP readiness effort: QUDA, Grid, etc. porting—scale of effort.
- Looking beyond ECP: importance of continued support for software and algorithm development/improvement (cf. April 2020 draft of Giles report).

Multi-scale Solvers

- Rich Brower et alia (LatticeQCD ECP solver task); planned.
- In the context of the Exascale Computing Project and, in particular, in collaboration with NVIDIA colleagues.
- A central part of lattice QCD is to obtain a Green function of the (lattice) Dirac operator:
 - multi-scale slowing down as $m_q \rightarrow m_{\rm up}, \ a \rightarrow 0$;
 - success and prospects of, e.g., multi-grid methods.

Other ECP possibilities

- Norman Christ et alia (LatticeQCD ECP CSD task); considered:
 - the Markov chain for generating lattice gauge fields slows down as $a \rightarrow 0$ (beyond Dirac solver issues).
- Robert Edwards et alia (LatticeQCD ECP contractions task); considered:
 - hadron correlators for nuclei become prohibitive, growing as $\sim (3A)^2$.

LOIs for CompF02 ⊕ Lattice Gauge Theory

Computational Requirements

- Peter Boyle & RBC/UKQCD collaborations; planned.
- CompF2 ⊕ TF05.
- Computational requirements (including on going software and algorithm development) for $n_f = 2+1+1$ chiral-fermion program with $a^{-1} \approx 3-5$ GeV.
- Make use of improvements from the existing ECP software, solvers, and critical slowing down program, but require an on-going investment in these areas to exploit HPC ten years from now.
- The investment in people is important, and career paths to long term positions in labs are required for retention of expertise.

- Xiao-Yong Jin, Sam Foreman, James Osborn; planned:
- <u>Tanmoy Bhattacharya</u>, Rajan Gupta, Boram Yoon, & nonlattice collaborators at LANL; <u>planned</u>:
 - ML, QIS for lattice QCD (CompF2 ⊕ CompF3 ⊕ CompF6).
- Phiala Shanahan & MIT colleagues; planned:
 - FPGA hardware for lattice field theory (CompF2 ⊕ TF05).
 See, e.g., T. Janson @ ACAT 2017.

LOIs for Lattice Gauge Theory

CompF02

- <u>Tanmoy Bhattacharya</u>, Rajan Gupta, Boram Yoon; planned:
 - neutron EDM from the operators up to dimension 6 using Lattice
 QCD (RF3

 CF2

 TF05

 CompF2);
 - scalar and tensor charges of the neutron including isospin breaking and momentum (EF05

 EF10

 NF05

 CF1

 TF05
 CompF2)
 - axial charges and form factors (NF05 ⊕ NF09 ⊕ CF1 ⊕ TF05 ⊕ CompF2)
 - neutrinoless double beta decay (NF03 ⊕ NF05 ⊕ RF4 ⊕ TF05 ⊕ TF11 ⊕ CompF2)
 - radiative corrections for semileptonic form factor (RF2 ⊕ TF05 ⊕ AF5 ⊕ CompF2).

Lattice QCD Nuclear Many-Body Theory

- Mike Wagman and collaborators at Fermilab, ANL, LBNL; being drafted.
 - Idea: combine lattice QCD calculations of nucleon properties with nuclear many-body theory (Green-function MC, spectral functions, ...).
 - LOI express interest in developing this idea from wishful thinking (as in, e.g., USQCD WP) into a real framework, making it possible to identify targets of opportunity for calculations and further theory development.
 - · QE, resonance region, SIS, DIS.
- Collaborators include nuclear theorists, lattice-QCD experts, and neutrino phenomenologists.
- Connect framework to generators.

LOIs for Lattice Gauge Theory + Other CompF

- Phiala Shanahan (MIT) & NYU, DeepMind colleagues; planned.
 - Machine learning for first-principles theory calculations (CompF3 ⊕ TF05).
- <u>Tanmoy Bhattacharya</u> and collaborators at LANL (lattice & non-lattice); planned.
 - HEP-QIS (TF10 ⊕ CompF6).
- Yannick Meurice, Simon Catterall, and Judah Unmuth-Yockey; two LOIs; both under review.
 - Tensor RG methods for lattice field theories (CompF6 QC ⊕ TF05 LGT ⊕ TF10 QIS).
 - Propose access to quantum computing facilities, coordinated as in USQCD, but without the hardware component (CompF6 QC ⊕ TF05 LGT ⊕ TF10 QIS).

LOIs for Lattice Gauge Theory + Other TGs

Fermilab Lattice and MILC Collaborations

- Future Fermilab/MILC plans for muon g-2 (<u>Aida El-Khadra</u> = POC); TF05

 RF3; planned.
- Status of quark masses and plans for strong coupling (<u>Andreas</u> <u>Kronfeld</u> = POC); TF05 ⊕ EF01; being drafted.
- Future Fermilab/MILC plans for nucleon matrix elements for neutrino physics (Andreas Kronfeld = POC); TF05 ⊕ TF11 ⊕ NF06; planned.
- Prospects for inclusive B decay amplitudes (Will Jay, Tom DeGrand = POCs); TF05 ⊕ RF1; planned.

- Phiala Shanahan & MIT colleagues; planned.
 - Gluon structure of hadrons and nuclei for TF05 ⊕ EF06;
 - Some emphasis on EIC applications.
- NPLQCD Collaboration (Phiala Shanahan = POC); planned.
 - Constraints on electroweak matrix elements from lattice QCD for EF04 and TF05
- NPLQCD Collaboration (Mike Wagman = POC); planned.
 - Lattice QCD inputs for neutrino-nucleus scattering (TF11 ® NF06), including multi-nucleon matrix elements, pion production, ingredients for the resonance region,

Towards global fits for three-dimensional nucleon structure from lattice QCD

- · Chris Monahan, Kostas Orginos, Luigi Del Debbio (and others); being drafted.
- TF05 ⊕ EF06
- Progress and prospects in lattice calculations of collinear hadron structure:
 - challenge of the ill-posed inverse problem for reconstructing PDFs from lattice data;
 - connections to the global fitting paradigm;
 - need for theoretical calculations of GPDs;
 - opportunities and challenges for lattice-QCD calculations of threedimensional, x-dependent hadron structure.

RBC/UKQCD Collaboration

- Rare $\Delta S = 1$ or 2 processes (Norman Christ = POC); RF2 \oplus TF05 \oplus TF06; planned.
 - Direct CP violation from ε' including the important EM and quark-mass isospin breaking corrections to two-pion kaon decay, achieving 10% over-all accuracy or below.
 - Indirect CP violation from ε, including long-distance effects, with sub-percent accuracy.
 - The K_L - K_S mass difference to few-percent accuracy.
 - $K^+ \rightarrow \pi^+ \nu \nu$ decay including long-distance effects resulting in sub-percent accuracy.
 - Calculation of the two-intermediate-photon background to $K_L \to \mu^+\mu^-$ allowing a new 10% test of the Standard Model.

Questions? Comments!